
This chapter is a brief introduction to the topic of vibrations. We already
know about the harmonic oscillator, and that is core idea. But here we want
to take account of three main ideas, with one section per idea.

1. Damping.There is friction, so oscillatory motion decays in time. This
is simple enough conceptually, but the mathematical descriptions are
more complicated than for the harmonic oscillator, involving a mix of
exponential and sine functions.

2. Forcing. Things get pushed around, or ‘forced’. What is the relation
between how much you push on something and how much it shakes.
The key ideas here are resonance and frequency response.

3. Normal modes. Most real machines and structures have various mov-
ing parts. How do things move with various parts? For simplicity here
we stick to the cases with no friction. The key idea is that one can think
of the general motions as made up of (as a superposition of) simple
harmonic motions. These are called normal modes.

10.1 Damped vibrations
In the real world, macroscopic oscillators that are not pumped have motions
that decay in time due to dissipation. Our goal is to understand what happens
to a harmonic oscillator when we add friction. In particular we are interested
in the simplest kind of friction caused by an ideal linear dashpot. What we
will find is exponentially decaying solutions that may, or may not have, an
oscillatory nature depending on the amount of friction.

Damping
Dashpots are used to absorb energy. One is shown schematically in fig. 10.1.
Often springs and dashpots are light in comparison to the machinery to which
they are attached so their mass and weight are neglected. They are usually
attached with pin joints, ball and socket joints, or other kinds of flexible
connections so only forces are transmitted. Because they only have forces at
their ends they are ‘two-force’ bodies so (see section 4.2) the forces at their
ends are equal, opposite, and along the line of connection. The most familiar
examples are the shock absorbers of a car or the damper for screen doors.
The symbol for a dashpot shown in fig. 10.1.
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Figure 10.2: A dashpot. A dashpot
(or damper) is shown here connecting
two parts of a mechanism. The ten-
sion in the dashpot is proportional to the
rate at which it lengthens. The symbol
shown represents any device which re-
sists the relative motion of its endpoints.
The schematic is supposed to suggest a
plunger in a cylinder. For the plunger to
move, fluid must leak around the cylin-
der. This leakage happens for either di-
rection of motion. Thus the damper re-
sists relative motion in either direction;
i. e., for P̀ > 0 and P̀ < 0.
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Figure 10.2: The effect of varying the
damping with a fixed mass and spring.
In all the plots the mass is released from
rest at x D x0. In the case of under-
damping, oscillations persist for a long
time, forever if there is no damping. In
the case of over-damping, the dashpot
doesn’t relax for a long time; it stays
locked up forever in the limit of c !1.
The fastest relaxation occurs for critical
damping.

Filename:tfigure12-MSD

k

c

m

x(t)

Fs = kx

Fd = c(dx/dt)

FBD

Figure 10.1: A mass spring dashpot system, or damped harmonic oscillator. Also shown is a
free body diagram of the mass.

The dashpot provides resistance to motion by drawing air or oil in and
out of the cylinder through a small opening. Due to the viscosity of the air
or oil, a pressure drop is created across the opening that is related to the
speed of the fluid flowing through. Ideally, this viscous resistance produces
linear damping, meaning that the force is exactly proportional to the velocity.
The relation is assumed to hold for negative lengthening as well. So the
compression (negative tension) is also proportional to the rate at which the
dashpot shortens (negative lengthens).

The tension in the dashpot is usually assumed to be proportional to the
rate at which it lengthens, although this approximation is not especially ac-
curate for most dampers one can buy. In a physical dashpot nonlinearities,
from the fluid flow and from friction between the piston and the cylinder, are
often significant. Also, dashpots that use air as a working fluid may have
compressibility that introduces extra springiness to the system.

The defining equation for an ideal linear dashpot is:

T D C P̀

where C is the dashpot constant.

Damped oscillations
We now add a dashpot in parallel with the spring of a mass-spring system
creates a mass-spring-dashpot system, or damped harmonic oscillator. The
system is shown in fig. 10.2. Also in fig. 10.2 is a free body diagram of the
mass. It has two forces acting on it, neglecting gravity:

Fs D kx is the spring force, assuming a linear spring, and

Fd D c dx=dt D c Px is the dashpot force assuming a linear dashpot.

The system is a one degree of freedom system because a single coordinate x
is sufficient to describe the complete motion of the system. The equation of
motion for this system is

m Rx D �Fd � Fs where Rx D d2x=dt2: (10.1)
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Assuming a linear spring and a linear dashpot this expression becomes

m Rx C c Px C kx D 0: (10.2)

We have taken care with the signs of the various terms. Make sure you can
confidently derive equation 10.2 without introducing sign errors. The analyt-
ical solution of the damped-oscillator equation is in box 10.2. Some qualita-
tive features of the damped solutions are shown in fig. 10.3

For given k and m we can think of the damping c as adjustable. A system
which has small damping (small c) is under-damped and does not come to
equilibrium quickly because oscillations last for a long time. A system which
has a lot of damping (big c) is over-damped does not come to equilibrium
quickly because the dashpot doesn’t leak fast enough. A system which is in
between, critically-damped comes to equilibrium most quickly. The purpose
of damping is often to purge motion after a disturbance. If the only design
variable available for adjustment is the damping, then the quickest purge is
accomplished with critical damping, c D

p
.4km/. In practice, any damping

value close to critical is often used, more or less depending on whether a little
oscillation is tolerable or not 1
.

Summary of equations for the unforced harmonic
oscillator
� Rx C k

m
x D 0, mass-spring equation

� Rx C �2x D 0, harmonic oscillator equation
� x.t/ D A cos.�t/C B sin.�t/, general solution to harmonic oscillator

equation
� x.t/ D R cos.�t � �/, amplitude-phase version of solution to har-

monic oscillator solution, R D
p
A2 C B2; � D tan�1.B

A
/ (See box

on page 460).
� RxC c

m
PxC k

m
x D 0, mass-spring-dashpot equation (see equations 10.3-

10.6 for solutions)

Solution of the damped-oscillator equations
Here are some mathematical details you can use for reference. These details
are of much lower status than those in box C.1 on page 1016. Only some
vibrations experts remember the formulas below in detail.

Even if we make the common assumptions that m; c; and k are all posi-
tive, the whole nature of the solution of (10.2) depends on the values of those
constants. The three types of solutions are categorized as follows:

� Under-damped: c2 < 4mk. In this case the damping is small and oscil-
lations persist forever, though their amplitude diminishes exponentially
in time. The general solution for this case is:

x.t/ D e.�
c
2m
/t �A cos.�d t /C B sin.�d t /�; (10.3)

1
Stereotypically, the suspension of
an overloaded old-fashioned luxury car
is underdamped, imagine it bouncing
along after a bump. And the suspension
of a tight sports car is underdamped.
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Figure 10.3: Measuring damping using
‘logarithmic decrements’.

where �d is the damped natural frequency and is given by

�d D
r

k

m
�
� c

2m

�2
: (10.4)

� Critically damped: c2 D 4mk. In this case the damping is at a critical
level that separates the cases of under-damped oscillations from the
simply decaying motion of the over-damped case. The general solution
is:

x.t/ D Ae.�
c
2m
/t C Bte.�

c
2m
/t : (10.5)

� Over-damped: c2 > 4mk. Here there are no oscillations, just a simple
return to equilibrium with at most one crossing through the equilibrium
position on the way to equilibrium. The general solution in the over-
damped case is:

x.t/ D Ae

�
� c
2m

C
q
. c
2m
/2� k

m

�
t

C Be

�
� c
2m

�
q
. c
2m
/2� k

m

�
t
: (10.6)

Measurement of damping. In the under-damped case, the damping con-
stant c can be found by measuring the rate of decay of unforced oscillations
using the ‘logarithmic decrement’. The logarithmic decrement is the natural
logarithm of the ratio of the amplitude of any two successive peaks. The
larger the damping, the greater the rate of decay and the bigger the decre-
ment:

logarithmic decrement � D D ln.
xn

xnC1
/ (10.7)

where xn and xnC1 are the heights of two successive peaks in the figure
below (also seen on the 2nd and 3rd figures in fig. 10.3 on page 500). Because
of the exponential envelope (bounding curve), xn D .const:/e�. c

2m
/tn and

xnC1 D .const:/e�. c
2m
/tnCT .

D D ln�.e�.
c
2m
/tn/=.e�.

c
2m
/tnCT /�

Simplifying this expression, we get that

D D cT

2m

where T is the period of oscillation. Thus, measuring the logarithmic decre-
ment D and the period of oscillation T determines c as

c D 2mD

T
:
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Solution using complex variables. To find the solutions above it is easi-
est to use complex variables. Consider this general constant coefficient 2nd
order linear equation:

A Rx C B Px C Cx D 0: (10.8)

We want to find the most general function x.t/ that satisfies this equation.
We do this by making the guess that

x.t/ D e�t :

Plugging this guess into eqn. (10.8) and cancelling the common non-zero
factor e�t from each term gives

A�2 C B� C C D 0:

For simplicity let’s assume this quadratic has two independent roots �1 and
�2,

�1;2 D
�B �

p
B2 � 4AC

2A
:

For each root we have a solution to eqn. (10.8). And the solutions can be
multiplied by a constant. And the solutions can be added. Thus the general
solution to eqn. (10.8) is:

x.t/ D C1e
�1t C C2e

�2t : (10.9)

This seems easy enough. But the �’s might be complex. And the C ’s too.
To get a real solution we have to take the real part using the Euler equation
ei�t D cos i�t C sin i�t ). By this means, with lots of algebra, we could see
that the solution 10.6 actually includes the solutions 10.3 and 10.5 as special
cases. This algebra is carried out for the simplest case, no damping, in box
9.3 on page 466.

Numerical solution to the damped oscillator equations
As for the numerical solution of the harmonic oscillator we define v D Px.
Thus

m Rx C c Px C kx D 0 ) m Pv C v C x D 0:

Combining the definition of v with the differential equation we get the set of
two coupled first order equations

Px D v

Pv D � k

m
x � c

m
v (10.10)

We can think of this as
Pz D f .z/

where z is the list of two numbers z.1/ D x and z.2/ D v so

d

dt

�
z1
z2

�
D
�

z2
� k
m
z1 � c

m
z2

�
:

which is standard form for numerical integration.
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Energy? Note that for the damped oscillator we cannot use energy con-
servation to check the solution because energy is constantly lost. We could,
however, make a plot of the total energy and make sure that it is an ever
decreasing (monotonically decreasing) function of time.
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