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Figure 10.13: A forced mass-spring-
dashpot is just a mass held in place by a
spring and dashpot but pushed by a force
F(¢) from some external source.

10.2 Forcing and resonance

If the world of oscillators was as we have described them so far, especially
in Section 9.3, there wouldn’t be much to talk about. The undamped oscil-
lators (of which there are none) would be oscillating away and the damped
oscillators (all the real ones) would be damped out to no motion. The reason
vibrations exist is because they are somehow excited. This excitement is also
called forcing whether or not it is due to a literal mechanical force.

The most important idea of this section is the following

If you shake something at about the same frequency at which it natu-
rally oscillates you will eventually get large motions.

The rest of the section is largely a fleshing out of this idea.

The simplest example of a ‘forced” harmonic oscillator is the mass-
spring-dashpot system with an additional mechanical force applied to the
mass. See fig. 10.14. Most of this section will be a study of this system.
The governing equation for a forced damped oscillator can be derived from
the free body diagram as follows, where vector notation helps keep the signs
right:

EFi = ma

—Fi—Fyi+ F(t)i = mai
{(=kx—cx+ F(t))1 = mii}
40 = —kx —cx + F(t) = mx

which is often re-arranged as

mx 4+ cx + kx = F(). (10.25)

When F(z) = 0, there is no forcing and the governing equation reduces to
that of the un-forced damped harmonic oscillator, eqn. (10.2).

Equivalent ways to force an oscillator

There are many ways to “force” a system that all lead to the same forced-
oscillator equation.

1. With a literal force as in fig. 10.14, shown again in fig. 10.15a.
2. By shaking the support, as in fig. 10.15b.

3. By displacing one end of the spring, but not the dashpot as in
fig. 10.15c.

4. By displacing one end of the dashpot, but not the spring as in
fig. 10.15d.
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5. By displacing a second mass attached to the first with a motor that
controls relative position, as in fig. 10.15e.

That these four systems all lead to the same governing equation follows from
drawing free body diagrams, applying momentum balance, and collecting
terms to match the form eqn. (10.25). Note that the meaning of some of the
terms in the forced-oscillation equation is different for each system.

Types of forcing

In general this or that machine or structure could be forced in any number
of complicated ways. But there are two special forcings of most common
engineering interest:

e F(t) = F, (Constant force), and
e F(t) = F cos At (sinusoidal forcing).®

Constant force idealizes situations where the force doesn’t vary much as due
say, to gravity, a steady wind, or sliding dry friction. Sinusoidally varying
forces are used to approximate oscillating forces as caused, say, by a vibrat-
ing support or earthquakes. Forces that are not sinusoidal can be thought
of as sums of sine waves thus, in some sense, by knowing how a structure
responds to sinusoidal forcing, at various frequencies, you know how it re-
sponds to all possible forcings®. Lets look at each of these two cases in
detail.

Forcing with a constant force

The case of constant forcing is both common and easy to analyze, so easy
that it is often ignored (see fig. 9.27 on page 463). If F(¢) = F, = constant,
then the general solution of eqnrefforcedODE for x(¢) is the same as the
unforced case but with a constant added. The constant is F,/k. The usual
way of accommodating this case is to describe a new equilibrium point at
x = Fy/k and to pick a new deflection variable that is zero at that point. If
we pick a new variable z defined as z = x — F,/k, then substituting into
eqn. (10.25) we get

mi+cz+kz=0, (10.26)

which is the unforced oscillator equation. That is, constant forcing reduces
to the case of no forcing if one merely changes what one calls zero to be the
place where the mass is in equilibrium, taking account of the spring stretch
(or compression) caused by the constant applied force. Thus the solution of
the forced equation for x is equivalent to the unforced solution for z:

z(t) = x(t) = Fy/k = 20" (Acos(Ayt) + B sin(Ayt))

where Ay = 4/ (ﬁ)2 — k/m, as explained in box 10.2 on page 501.

An alternative approach is to use superposition. Here we say x(f) =
xp (1) + xp,(f) where xp(¢) satisfies m¥ + cx + kx = 0 and x,(7) is any
solution x,, of mX + ¢x + kx = F,. Any solution you like is called a

(10.27)
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Figure 10.14: In all cases shown above
the same forced oscillator eqn. (10.25)
applies. In (a) a literal force is applied.
In all the other cases the “forcing” is by
a motor that moves something back and
forth a distance §. In (b) the support
moves. In (c) and (d) just the spring or
just the dashpot end is displaced. In (e)
an extra mass is moved relative to the
main mass.

<DNote again that we use A (lambda)
here instead of the more commonly used
® (omega) because we want to avoid
confusion with the magnitude of angu-
lar velocity @ = |@| which itself could
have oscillatory motion. It would be
confusing (and bad math) to write w =
Asinwt with o having two different
meanings in the same equation.
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®The best approximation of a function
as a sum of sine waves is a Fourier se-
ries, a topic you learn in math, advanced
physics or linear systems courses.
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Figure 10.15: A mass hangs from a
spring and dashpot. Its distance x from
the support is due to the rest length £ of
the spring, and the stretch of the spring.

“particular” solution. One easy solution is x, = Fy/k. So the net solution

is x,, = Fy/k plus a solution x;, to the *homogeneous’ equation 10.26.

x(t) = T2 (A cos(Ayt) + B sin(Aqt)) + Fo/k (10.28)
e

Xn Xp1

Example: Hanging mass.
The mass hanging from the support shown in fig. 10.16 obeys the equation
mX 4+ cx +kx =kly+mg
N— —’
Fy

One particular solution x,,, the easiest one, has the mass hanging still. In this
solution, the mass position is the un-stretched length £, of the spring plus the stretch
of the spring due to gravity, Ax = mg/k. Because the mass is still in this solution,
the dashpot constant ¢ doesn’t appear. So

x, =4{y +mg/k.

The homogeneous solution xj, is given by (10.27) and the general motion is the
sum

x(1)

Xy + Xp

(Lo + mg/k) + e~ Fm (C cos(Ayt) + D sin(Agt))

where C and D are constants determined by the initial conditions. For any initial
condition and corresponding values of A and B, the motion eventually decays to the
stationary particular solution with the mass hanging still (because the exponentials
g0 to zero as t — 00).

Forcing with a sinusoidally varying force

The motion resulting from sinusoidal forcing is of central interest in vibration
analysis. In this case we imagine that F(z) = F cos pt where F is the
amplitude of forcing and p is the angular frequency of the forcing. Note, we
could just as well use F(¢) = F sin pt for the forcing, sin and cos are both
sinusoidal forcings.

The general solution of equation 10.25 is given by the sum of two parts.
One is the general solution of equation 10.2, x;(¢), and the other is any so-
lution of equation 10.25, x,(¢). The solution x(¢) of the damped oscillator
equation 10.2 is called the ‘homogeneous’ or ‘complementary’ solution. Any
solution x, () of the forced oscillator equation 10.25 is called a ‘particular’
solution.

We already know the solution xj,(¢) of the undamped governing differen-
tial equation 10.2. This solution is equation 10.3, 10.5, or 10.6, depending on
the values of the mass, spring and damping constants. So the new problem
is to find any solution to the forced equation 10.25. The easiest way to solve
this (or any other) differential equation is to make a fortuitous guess (you
may learn other methods in your math classes). In this case with

F(t) = F cos(pt)

Introduction to Statics and Dynamics, @ Andy Ruina and Rudra Pratap 1994-2013.



Chapter 10. Vibrations

10.2. Forcing & resonance 517

we make the guess that

x,(t) = Acos(pt) + B sin(p?). (10.29)

Basically this guess says “If you shake something with a sine wave it will
probably move as a sine wave. But who knows the amplitude or phase?”
Plugging this guess into the forced oscillator equation (10.25) we find values
for A and B in box 10.2 on page 523.

Alternatively, a sum of sine waves can be written as a cosine wave (or
sine wave) that has been shifted in phase as (see box 9.2 on page 460)

x,(t) = Agcos(pt — @),

The value of forced amplitude is simply 4, = A% 4+ B? and is also given in
terms of m, ¢, k, p and F in box 10.2. The forced amplitude A, is the central
subject of this section. It answers the question ‘How big are the oscillations
when you shake something.?” Because the formula for A, is admittedly a
mess, the answer is often given in a p10t®. The general solution, therefore,

18

x(t) = xp(0) + x,(0). (10.30)

The homogeneous solution xj(#), the motion of the unforced system, is just
decaying oscillations and is usually not of primary interest in vibrating sys-
tems. The particular solution x,,(¢) is steady oscillations. These oscillations
are of central interest. In particular most often in engineering one wants these
oscillations to be big or small.

Example: MEMs devices.

One general type of “Micro Electronic Machine” consists of, basically, a vi-

brating beam. A beam with an effective mass 50 gm and effective stiffness of
k =500N/m = 5u N/pm has

5 ﬁ_ S5SN/m
" Vm o \V50-10%9kg

which corresponds to a frequency of A,/2mw ~ 15.7k hz. That is, such a MEMs
device would be a good receiver (or ‘resonator’) for 15.7k hz ultra-sonic vibrations.
In this case resonance is useful to make the sensor sensitive.

500N (1kg m/s?

IN )
- = V1010571 = 10%/s

50-10—6 kg

The size of the oscillations scales with the size of the forcing F (this pro-
portionality is known as ‘linearity’) and also depends on all the parameters
m,c,k and p.

Frequency responsc and resonance

One way to show a structure’s sensitivity to oscillatory loads is by a frequency
response curve fig. 10.17. One curve shows the amplitude of vibrations
vs the forcing frequency. The main idea of this section, resonance, shows
as a peak in the frequency-response curve near the natural frequency A, =
Vk/m.

Recall that the natural frequency A, is the unforced frequency of un-
damped oscillation. The damped natural frequency A4, the frequency of
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®Another more important reason that
a plot is used is that often in a physical
system one can measure the vibrations
while never knowing a detailed accu-
rate set of differential equations which
would describe the system accurately.
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Figure 10.16: Amplitude of oscillation
vs forcing frequency for various damp-
ings. Each curve shows the gain G vs
the forcing frequency for a fixed damp-
ing. Note that when the damping is
small (¢ < 1) and the forcing is close to
the natural frequency of vibration p ~
A, there is a ‘resonant’ peak in the am-
plitude of the response. The smaller the
damping the higher and narrower is this
peak. For very high damping the peak is
at a slightly lower frequency. The mass-
spring-dashpot system shown was used
to generate the plots using the formulas
from box 10.2 on page 523.
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@Golden Gate bridge cables. On a
walk a few years ago one of us noted
that the vertical cables on the Golden
Gate bridge could be induced to oscil-
late quite visibly if pushed by a per-
son at the right frequency (about 0.5
hz). One cable, maybe 100 tons of steel,
was nicely going back and forth about
a half a meter. A police car pulled up
an stopped. Through the megaphone the
officer authoritatively and sternly threat-
ened “If you break it you have to pay for
it.”
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Figure 10.17: Natural, damped and
resonant frequencies. The upper
dashed plot shows the ratio of damped to
natural frequency vs forcing frequency
ratio £&.  The solid curve shows how
the resonant frequency varies from the
natural frequency as a function of fre-
quency ratio. The lower plot shows how
the amplification G = Ay/(F/k) is
nearly the same at the natural, damped
and resonant frequencies. That the peak
in the ¢ = 0.6kg/s curve of fig. 10.17 is
slightly to the left of p = A, = /k/m
shows as A, /A, being slightly below 1
for £ ~ 0.3. For low damping an en-
gineer can treat the natural, damped and
resonant frequencies as equal. Similarly
the amplification when forced at the nat-
ural frequency is very close to the ampli-
fication when forcing is at the damped or
at the resonant frequency.

decaying oscillations with damping present, is slightly slower (see, e.g.,
eqn. (10.3) on page 501.). The resonant frequency A, the frequency of
forcing for which the amplitude of motion is maximum (eqn. (10.2) on page
523), is slightly lower still. But, especially when the damping is low, there is
only a small difference between the natural frequency, the damped frequency
and the resonant frequency. So, in common language and engineering prac-
tice they are usually treated as one and the same.

In summary, the frequency response curve has a peak with forcing near to,
but not exactly at, the natural frequency of unforced and undamped motion.
But most engineers can reasonably assume, even though its not exactly true,
that resonance occurs when the forcing frequency is the natural vibration
frequency.

Resonance is good and bad

Sometimes an engineer studies vibrations with the hope of minimizing them,
sometimes with the hope of maximizing them. Resonance is sometimes the
problem and sometimes the solution.

Resonant vibrations are usually undesirable in machinery or cars. The vi-
brations can lead to large stresses, undesirable motions, or unpleasant sounds.
A building resonating to earthquake vibrations may be more likely to fall
down.

On the other hand, nuclear Magnetic Resonance imaging is used for med-
ical diagnosis. In the old days, the resonant excitation of a clock pendulum
was used to keep time. The resonance of quartz crystals is used to time most
watches now-a-days. Self excited resonance is what makes musical instru-
ments have such clear pitches. And resonant vibrations are used to give a
larger signal in micro-mechanical sensors. In the electrical domain, radio
tuners depend on resonance to pick out just one radio band.

Other systems

Most machines and structures are not exactly a point mass moving in one
direction and constrained by a single spring and single dashpot. On the other
hand, almost all machines have mass, elastic give, and some dissipation when
they move. So most machines have natural oscillations after they are banged
or disturbed somehow. And so most structures and machines can be shaken
to large motions if the appropriate (or inappropriate, depending on your aims)
frequency of force is applied'¥.

So the concepts introduced here for a single mass-spring-dashpot system
apply to much more complex machines and structures. In particular, have
natural vibration frequencies and they shake a lot (resonate) if forced at near
those frequencies.

Experimental measurement

Because no real thing of interest is exactly a single mass-spring-dashpot the
ideas of vibrations analysis are often not expressed in terms of (n, ¢ and k).
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Rather, the more broad ideas of natural frequency, frequency response, and
resonance are considered on their own. Using either a large-scale computer
model (say a ‘finite-element’ model) or measurement of the physical system
itself, one can draw a frequency-response curve like fig. 10.17 on page 517.

Here’s how. First you apply a sinusoidal force to the structure at the point
of interes, say F = F cos(pt). Then you measure the motion of a part of
the structure of interest. You might instead measure a strain or rotation, but
for definiteness let’s assume you measure the displacement of some point on
the structure §.

If the structure is linear and has some damping, the eventual motion of
the structure will eventually be a sinusoidal oscillation. In particular, you
will measure that

8 = Ag - cos(pt — ¢). (10.32)

If you had applied half as big a force, you would have measured half the
displacement, still assuming the structure is linear, so the ratio of the dis-
placement to the force A,/ F is independent of the size of the force F. Let’s
define:
Ay
G =—
F

That is, the amplification gain G is the ratio of the amplitude of the displace-
ment sine wave to the amplitude of the forcing sine wave. Plotting p on the
x axis and G on the y axis, this experiment gives one point on the frequency

10.1 A Loudspeaker cone is a forced oscillator.

eI GuTFRe] cone mounting of the cone which you hear as sound.

(suspension) ( ﬂange\/) In the speaker, the primary mass is comprised of the coil and
cone, though the air near the cone also contributes as ‘added mass.’

- The ‘spring’ and ‘dashpot’ effects in the system are due to the foam

and cloth supporting the cone, and perhaps to various magnetic ef-

fects. Speaker system design is greatly complicated by the fact that

el?arical frame the air surrounding the speaker must also be taken into account.
connections voice coil Changing the shape of the speaker enclosure can change the effec-
cloth imagnet tive values of all three mass-spring-dashpot parameters. (You may
spider structure be able to observe this dependence by cupping your hands over a
Chopssassomel vie 6o speaker. speaker (gently, without touching the moving parts), and observing
A speaker, similar to the ones used in many home and auto amplitude or tone changes.) Nevertheless, knowledge of the basic
speaker systems, is one of many devices which may be conveniently characteristics of a speaker (e.g., resonance frequency), is invaluable
modeled as a one-degree-of-freedom mass-spring-dashpot system. in speaker system design.
A typical speaker has a paper or plastic cone, supported at the edges Our approximate equation of motion for the speaker is identi-
by a roll of plastic foam (the surround), and guided at the center cal to that of the ideal mass-spring-dashpot above, even though the
by a cloth bellows (the spider). It has a large magnet structure, and forcing is from an electromagnetic force, rather a than a direct me-
(not visible from outside) a coil of wire attached to the point of the chanical force:
cone, which can slide up and down inside the magnet. (The device
described above is, s.trictly speaking, the speaker driver.. A com- mi + ek + kx = F(¢) with F(t) = ai(f) (10.31)
plete speaker system includes an enclosure, one or more drivers, and
various electronic components.) When you turn on your stereo, the where i(¢) is the electrical current flow through the coil in amps,
amplifier forces a current through the coil in time with the music, and « is the electro-mechanical coupling coefficient, in force per
causing the coil to alternately attract and repel the magnet. This unit current.

rapid oscillation of attraction and repulsion results in the vibration
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Figure 10.18: Transient response. (a)
shows a suddenly applied force F{y. The
response (b) to this force is a motion that
starts at the initial position xg (xg > 0
in this illustration) and then oscillates
about the new equilibrium Fy/k. The
motion is identical to unforced motion,
but offset. Thus it can be used to evalu-
ate the rate of decay of oscillation and
the damped period of oscillation. (c)
A sinusoidal forcing causes. (d) the re-
sponse if the mass is released at x = x
and suddenly both a constant force F
and a sinusoidal force F sin pt are ap-
plied. The motion eventually settles into
a sinusoidal oscillation at the forcing
frequency (which is a little longer period
than the damped oscillation in this illus-
tration) with amplitude Ay.

response curve. Repeating for a range of forcing frequencies one can plot up
the frequency response G = G(p).
Example: Shake table for earthquake response.
One way to get a frequency response curve for a building is to put a scale model
on a “shake table”. The base is then moved sinusoidally through a range of fre-
quencies and the motion of the model is observed. This way one can find peaks
in the frequency-response curve. These are frequencies that, to the extent they are
prevalent in a feared earthquake, are likely to cause damage.

Transient response

As discussed, the full solution of eqn. (10.25) with forcing F(t) = Fy +
F cos pt is the sum of three terms

x(t) =xp + Xp1 + Xp2

The first of these has decaying oscillations, the second is a constant, and
the third has steady oscillations. When added up the motion can look quite
complicated, as seen in fig. 10.19. The main point is that after some ini-
tial complicated transient the motion eventually decays to steady oscillations
(xp2(1) = Ag(cos pt — ¢)) plus an offset (x,; = F/k).

The vocabulary of forced oscillations

Forced oscillations are so important and common that there is a specialized
vocabulary for many of the terms and collections of commonly appearing
terms. Here is a list, starting with the terms you know well.

m = the mass of the particle that is oscillating. For more complicated
systems the mass m may represent an “effective” or “equivalent” mass.

¢ = the damping coefficient. c is used to describe the viscous drag, the
resistance to motion Fy; = —cX.

k = the spring constant. & describes the elastic restoring “spring” force
Fy = —kx.

F = the forcing amplitude for a sinusoidally varying applied force
F(t) = Fsinptor F(t) = Fcos pt or F(t) = Asin pt + B cos pt
with F = VA2 + B2,

p = the forcing frequency. Some books will use the symbol @ for the
forcing frequency.

The rest of the quantities below are completely determined by the quantities
above (i, ¢, k, F and p).

A, = k/m is the natural frequency. This is the frequency of oscillation
if there is neither forcing nor damping. In that case x(t) = Acos At +
B sin A, f. Many books use w,, for the natural frequency.

Cerit = 2% v km is the critical damping coefficient. The relation of the ac-
tual damping c to the critical damping c;, tells you whether a system is
over-damped (¢ > ¢,y = decay to equilibrium, when unforced,
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that is exponential) or under-damped (¢ < c,;;, =  decay to equi-
librium, when unforced, that is oscillatory). See Fig. 10.3 on page 500.
Sometimes ¢ is more simply written as ¢, or ¢,

£ = c/cyy 1s the damping ratio. The single number & (‘ksee’) tells you if

a system is over damped (§ > 1) or underdamped (¢ < 1).

r = p/iA, = p/+/k/misthe frequency ratio . If r > 1 then the forcing is

faster than the frequency of natural unforced vibrations. If » < 1 then
the forcing is slower than the natural vibrations.

Ao = the response amplitude . When a steady oscillatory force is applied

the motion is eventually oscillatory. The amplitude of the motions is
Ag,asin x = Agcos(pt — ¢) with

Ay = (F/R)/\J2Er)2 + (1= r2)2)).

G = A,/(F/k) is the gain or amplification. G is the ratio of the eventual

A’l‘CS

amplitude of the oscillator to the response that would occur if the same
force was applied at zero frequency. It is the response amplitude scaled
by the displacement that would occur if the same force was applied to
a spring.

= A,+/1 — 282 is the resonant frequency. 1. (also called A, or w,)
is the frequency such that if p = A, the amplification gain G is max-
imum. The resonant frequency is the frequency at which you force a
system to get the biggest motions. The resonant frequency A, is rather
close to the natural frequency A, in systems with small damping ratios.
And these are also the systems that are prone to resonant vibrations.

A4 is the damped natural frequency . If an underdamped system is re-

leased from rest it oscillates as the motions decay. The frequency of
these oscillations is

Ag= A/l — &2,

The frequency A4 of damped oscillations is a shade slower than the fre-
quency A, of oscillation of the same system with no damping. When
damping is small the natural frequency A,, the damped frequency
A4 and the resonant frequency A, are all close to each other (See
fig. 10.17a).

G,, G, & G4 are the amplification gains (see G above) when forcing is at

the natural, the resonant and the damped natural frequency respectively
(P = Aps Ares & Ay, see above). G, is the biggest of these by defini-
tion. But it is not actually much bigger than G,, or G;. These gains can
be calculated using the formulas for G and 4, above. They are plotted
on fig. 10.17b.

D is the logarithmic decrement. D measures the rate of decay of unforced

(F = 0) oscillations. The experimental definition, derivable from a
graph of the motion, is

D =In(-

).

Xn+1
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In terms of m, ¢ and k the logarithmic decrement is D = % = 2né,
as derived on page 501. If there is little damping, ¢ is small (¢ < 1)
and D ~ (x,, — Xx,1.1)/x, is the fractional decrease in amplitude per
oscillation. If D = .1 then each oscillation is about 10% smaller in
amplitude than the previous one.

Q is the quality factor. For the mass-spring-dashpot system it is another
way of describing the rate of decay of unforced oscillations.

Q = 2m(energy of oscillator) /(energy lost per cycle)
= 27/ (5 = Xa41)
~ /D =1/(2§) (for small damping)

The 7 in the definition of O makes it so there is no 7 in the formula
for the quality factor Q in terms of the damping ratio £. Note that,
so long as damping is small, &, D and @ can each be found approxi-
mately from the other. A system with low damping (¢ < 1) has high
quality (Q > 1) and slowly decaying oscillations and hence a small
logarithmic decrement (D <« 1).
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10.2 Solution of the forced oscillator equation

The main equation for understanding forced oscillations is:
mx + c¢x + kx = Fy + F cos pt.

Because the equation is linear we look for a solution which is the
sum of three terms

x(@) =xp +xp1 +Xpp

where x; is the homogeneous solution from Eqns 10.3 - 10.6 on
page 501, depending on whether the system is underdamped (os-
cillatory decay), critically damped or over damped (non-oscillatory
exponential decay). X, is a particular solution for the constant forc-
ing F. X, (¢) was found in eqn. (10.28) on page 516 to be, simply,
xpl = Fo/ k.

The last part of the solution, finding an X ,,, for the forcing term
F cos pt is found by guessing

Xpo = Acos pt + Bsin pt.
When this guess is plugged into the equation
mx + cx + kx = F cos pt
every term is either a multiple of sin pz or cos p¢. Thus we get
{A collection of constants} cos pt+{Another collection} sin pt = 0

The only way a sum of a sine wave and cosine wave can be zero for
all time is for both coefficients to be zero. Setting the two collections
of constants above both to zero gives two simultaneous equations for
the unknowns A and B in terms of m, ¢,k and p. These can be
solved to give

L F/0) (1 - o) |

2 P2 2\
(/fw) (7k/m) + (1 - 4(k/m))
(F/k)(cp/k)
2 2 2 \2
(157) (kl;m) + (1 - (kp/m))
So we have found the particular solution for forcing with F (z) =
F cos pt, using A and B above, as

and B =

Xpp = Acos pt + Bsin pt. (10.33)
An alternative form for the solution is
Xpo(2) = Agcos(pt — @), (10.34)

for which we can find the constants A, and ¢ using the trig identity
cos(f@ —¢) = cos B cos ¢ + sin B sin ¢ described in box 9.2 on page
460. Applying this identity to the solution above we find the object
of central interest, the forced amplitude

AO = vV (A2 + BZ) = F/k

V(22 Vo (1— . 22 )
km ) \k/m (k/m)
(10.35)
and also the phase angle

¢ = tan ! (E) = tan—! L/kz (10.36)

A (1 _ D )

(k/m)

All of the expressions above can be somewhat simplified if write
them in terms of the frequency ratio r = p/A, = p/k/m
and damping ratio § = ¢/cyy = ¢/2+km (The frequency ra-
tio, damping ratio and some more specialized vibration words are
defined on page 520.). Using these dimensionless quantities, the val-
ues of the constants in the solution X > (), namely eqn. (10.33) or
eqn. (10.34), are:

(F/k)(1—r?)

A = 5
482r2 4+ (1 —r2)
. (F/k) (2r)
- 2
4€2r2 4+ (1—r2)
4y = Jzipy= Gk :
&2 + (1-r2)°
and E 2%
_ _ r
¢ = tan 1<Z)=tan 1<1_r2).

These constants are for the particular forced solution x pz(t) of
eqn. (10.33) or eqn. (10.34). Again, most important in all of this is
the amplitude A, of the forced response. As you can see, the bottom
of the fraction for A gets quite small for small damping (§ < 1) if
the frequency ratio 7 is close to 1. That is,

the amplitude is big if the forcing is close to the natural fre-
quency.

Resonant frequency

In detail, the frequency at which the vibration amplitude A is
maximum is not exactly the unforced undamped natural frequency
Ay, = ~/k/m. The resonant frequency A, is found by maximizing
A with respect to 7 = A/A,. Setting dAy/dr = 0 and solving
for r we find

Tes = Yy 1—282 = A =A/1—-282  (10.37)
The ratio of A,./A, is plotted on fig. 10.17 on page 517. Also plot-

ted is the ratio of A, at resonance to Ay if forcing is at the natural
frequency. The morals are that a) for small damping the natural fre-
quency and resonant frequency are very close, and b) for all damp-
ings, there is little error in calculating the amplitude of the maximum
vibration response by approximating resonance as being at the natu-
ral frequency. Even when resonance is barely a viable concept, for
systems that are critically damped, the error is only 40%.
Similarly one might think the damped natural frequency
Ag = A/1—E2

would be a better approximation to the resonant frequency. Actually,
its about half way between the natural and resonant frequencies, as
can be seen also on fig. 10.17.
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