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3
 Theoretically, all of these values
should be the same, but it is rarely the
case in practice. When xn’s are mea-
sured from an experimental setup, the
values of D may vary even more.

SAMPLE 10.5 A SDOF spring-mass model from given data: The fol-
lowing table is obtained for successive peaks of displacement from the sim-
ulation of free vibration of a mechanical system. Make a single degree of
freedom mass-spring-dashpot model of the system choosing appropriate val-
ues for mass, spring stiffness, and damping rate.
Data:

peak no. n 0 1 2 3 4 5 6

time ( s) 0.0000 0.6279 1.2558 1.8837 2.5116 3.1395 3.7674

peak x ( m) 0.5006 0.4697 0.4411 0.4143 0.3892 0.3659 0.3443

Filename:sfig9-3-damped-data
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Figure 10.12: Oscillation data from the simulation of a mechanical system

Solution Since the data provided is for successive peak displacements, the time between any
two successive peaks represents the period of oscillations. It is also clear that the system is
underdamped because the successive peaks are decreasing. We can use the logarithmic decre-
ment method to determine the damping in the system.

First, we find the time period TD from which we can determine the damped circular
frequency �D . From the given data we find that

t2 � t1 D t3 � t2 D t4 � t3 D � � � D 0:6279 s

Therefore,

TD D 0:6279 s:

) �D D 2�

TD
D 10 rad=s: (10.21)

Now we make a table for the logarithmic decrement of the peak displacements:

peak disp. xn .m/ 0.5006 0.4697 0.4411 0.4143 0.3892 0.3659 0.3443

xn
xnC1

1.0658 1.0648 1.0647 1.0645 1,0637 1.0627

ln
�

xn
xnC1

�
0.0637 0.0628 0.0627 0.0624 0.0618 0.0608

Thus, we get several values of the logarithmic decrement D D ln
�

xn
xnC1

�
3
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We take the average value of D:

D D ND D 0:0624: (10.22)

Let the equivalent single degree of freedom model have massm, spring stiffness k, and damp-
ing rate c. Then

�D D �

q
1 � �2 � � D

r
k

m
:

Thus, from Eqn (10.21),
k

m
D �2 D 100. rad=s/2; (10.23)

and, since D D cTD
2m , from Eqn (10.22) we get

c D 2mD

TD

D 2m.0:0624/

0:6279 s

D .0:1988
1

s
/m: (10.24)

Equations (10.23) and (10.24) have three unknowns: k, m, and c. We cannot determine all
three uniquely from the given information. So, let us pick an arbitrary mass m D 5 kg. Then

k D .100
1

s2
/�.5 kg/

D 500N=m;

and

c D .0:1988
1

s
/�.5 kg/

D 0:99N� s=m:

m D 5 kg;
k D 500N=m;
c D 0:99N� s=m:

Of course, we could choose many other sets of values for m; k, and c which would match

the given response. In practice, there is usually a little more information available about the

system, such as the mass of the system. In that case, we can determine k and c uniquely from

the given response.

Introduction to Statics and Dynamics, c
 Andy Ruina and Rudra Pratap 1994-2013.


